Evaluate
\frac{24\sqrt{5}}{5}-4\sqrt{3}\approx 3.804923062
Share
Copied to clipboard
\frac{\sqrt{3}}{-\sqrt{15}}-\frac{\sqrt{5}\left(4-\sqrt{15}\right)}{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}+\frac{18}{\sqrt{5}+\sqrt{3}}
Rationalize the denominator of \frac{\sqrt{5}}{4+\sqrt{15}} by multiplying numerator and denominator by 4-\sqrt{15}.
\frac{\sqrt{3}}{-\sqrt{15}}-\frac{\sqrt{5}\left(4-\sqrt{15}\right)}{4^{2}-\left(\sqrt{15}\right)^{2}}+\frac{18}{\sqrt{5}+\sqrt{3}}
Consider \left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}}{-\sqrt{15}}-\frac{\sqrt{5}\left(4-\sqrt{15}\right)}{16-15}+\frac{18}{\sqrt{5}+\sqrt{3}}
Square 4. Square \sqrt{15}.
\frac{\sqrt{3}}{-\sqrt{15}}-\frac{\sqrt{5}\left(4-\sqrt{15}\right)}{1}+\frac{18}{\sqrt{5}+\sqrt{3}}
Subtract 15 from 16 to get 1.
\frac{\sqrt{3}}{-\sqrt{15}}-\sqrt{5}\left(4-\sqrt{15}\right)+\frac{18}{\sqrt{5}+\sqrt{3}}
Anything divided by one gives itself.
\frac{\sqrt{3}}{-\sqrt{15}}-\sqrt{5}\left(4-\sqrt{15}\right)+\frac{18\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{18}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\sqrt{3}}{-\sqrt{15}}-\sqrt{5}\left(4-\sqrt{15}\right)+\frac{18\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}}{-\sqrt{15}}-\sqrt{5}\left(4-\sqrt{15}\right)+\frac{18\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\sqrt{3}}{-\sqrt{15}}-\sqrt{5}\left(4-\sqrt{15}\right)+\frac{18\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{\sqrt{3}}{-\sqrt{15}}-\sqrt{5}\left(4-\sqrt{15}\right)+9\left(\sqrt{5}-\sqrt{3}\right)
Divide 18\left(\sqrt{5}-\sqrt{3}\right) by 2 to get 9\left(\sqrt{5}-\sqrt{3}\right).
\frac{\sqrt{3}}{-\sqrt{15}}-\left(4\sqrt{5}-\sqrt{5}\sqrt{15}\right)+9\left(\sqrt{5}-\sqrt{3}\right)
Use the distributive property to multiply \sqrt{5} by 4-\sqrt{15}.
\frac{\sqrt{3}}{-\sqrt{15}}-\left(4\sqrt{5}-\sqrt{5}\sqrt{5}\sqrt{3}\right)+9\left(\sqrt{5}-\sqrt{3}\right)
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{\sqrt{3}}{-\sqrt{15}}-\left(4\sqrt{5}-5\sqrt{3}\right)+9\left(\sqrt{5}-\sqrt{3}\right)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\sqrt{3}}{-\sqrt{15}}-4\sqrt{5}-\left(-5\sqrt{3}\right)+9\left(\sqrt{5}-\sqrt{3}\right)
To find the opposite of 4\sqrt{5}-5\sqrt{3}, find the opposite of each term.
\frac{\sqrt{3}}{-\sqrt{15}}-4\sqrt{5}+5\sqrt{3}+9\left(\sqrt{5}-\sqrt{3}\right)
The opposite of -5\sqrt{3} is 5\sqrt{3}.
\frac{\sqrt{3}}{-\sqrt{15}}-4\sqrt{5}+5\sqrt{3}+9\sqrt{5}-9\sqrt{3}
Use the distributive property to multiply 9 by \sqrt{5}-\sqrt{3}.
\frac{\sqrt{3}}{-\sqrt{15}}+5\sqrt{5}+5\sqrt{3}-9\sqrt{3}
Combine -4\sqrt{5} and 9\sqrt{5} to get 5\sqrt{5}.
\frac{\sqrt{3}}{-\sqrt{15}}+5\sqrt{5}-4\sqrt{3}
Combine 5\sqrt{3} and -9\sqrt{3} to get -4\sqrt{3}.
\frac{\sqrt{3}}{-\sqrt{15}}+\frac{\left(5\sqrt{5}-4\sqrt{3}\right)\left(-\sqrt{15}\right)}{-\sqrt{15}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5\sqrt{5}-4\sqrt{3} times \frac{-\sqrt{15}}{-\sqrt{15}}.
\frac{\sqrt{3}+\left(5\sqrt{5}-4\sqrt{3}\right)\left(-\sqrt{15}\right)}{-\sqrt{15}}
Since \frac{\sqrt{3}}{-\sqrt{15}} and \frac{\left(5\sqrt{5}-4\sqrt{3}\right)\left(-\sqrt{15}\right)}{-\sqrt{15}} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}-25\sqrt{3}+12\sqrt{5}}{-\sqrt{15}}
Do the multiplications in \sqrt{3}+\left(5\sqrt{5}-4\sqrt{3}\right)\left(-\sqrt{15}\right).
\frac{-24\sqrt{3}+12\sqrt{5}}{-\sqrt{15}}
Do the calculations in \sqrt{3}-25\sqrt{3}+12\sqrt{5}.
\frac{\left(-24\sqrt{3}+12\sqrt{5}\right)\sqrt{15}}{-\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{-24\sqrt{3}+12\sqrt{5}}{-\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\left(-24\sqrt{3}+12\sqrt{5}\right)\sqrt{15}}{-15}
The square of \sqrt{15} is 15.
\frac{-24\sqrt{3}\sqrt{15}+12\sqrt{5}\sqrt{15}}{-15}
Use the distributive property to multiply -24\sqrt{3}+12\sqrt{5} by \sqrt{15}.
\frac{-24\sqrt{3}\sqrt{3}\sqrt{5}+12\sqrt{5}\sqrt{15}}{-15}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{-24\times 3\sqrt{5}+12\sqrt{5}\sqrt{15}}{-15}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-72\sqrt{5}+12\sqrt{5}\sqrt{15}}{-15}
Multiply -24 and 3 to get -72.
\frac{-72\sqrt{5}+12\sqrt{5}\sqrt{5}\sqrt{3}}{-15}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{-72\sqrt{5}+12\times 5\sqrt{3}}{-15}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{-72\sqrt{5}+60\sqrt{3}}{-15}
Multiply 12 and 5 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}