Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{7}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{3}.
\frac{\sqrt{3}\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Square \sqrt{7}. Square \sqrt{3}.
\frac{\sqrt{3}\left(\sqrt{7}+\sqrt{3}\right)}{4}
Subtract 3 from 7 to get 4.
\frac{\sqrt{3}\sqrt{7}+\left(\sqrt{3}\right)^{2}}{4}
Use the distributive property to multiply \sqrt{3} by \sqrt{7}+\sqrt{3}.
\frac{\sqrt{21}+\left(\sqrt{3}\right)^{2}}{4}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{21}+3}{4}
The square of \sqrt{3} is 3.