Evaluate
-\frac{\sqrt{10}}{2}-\frac{4\sqrt{15}}{5}\approx -4.679525507
Share
Copied to clipboard
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}}{5}-\frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}}{5}-\frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}+\sqrt{30}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{15}}{5}-\frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{15}}{10}-\frac{5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{\sqrt{15}}{5} times \frac{2}{2}. Multiply \frac{\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{2} times \frac{5}{5}.
\frac{2\sqrt{15}-5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10}
Since \frac{2\sqrt{15}}{10} and \frac{5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{15}-5\sqrt{10}-10\sqrt{15}}{10}
Do the multiplications in 2\sqrt{15}-5\left(\sqrt{5}+\sqrt{30}\right)\sqrt{2}.
\frac{-8\sqrt{15}-5\sqrt{10}}{10}
Do the calculations in 2\sqrt{15}-5\sqrt{10}-10\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}