Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{2}.
\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{5-2}
Square \sqrt{5}. Square \sqrt{2}.
\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{3}
Subtract 2 from 5 to get 3.
\frac{\sqrt{3}\sqrt{5}-\sqrt{3}\sqrt{2}}{3}
Use the distributive property to multiply \sqrt{3} by \sqrt{5}-\sqrt{2}.
\frac{\sqrt{15}-\sqrt{3}\sqrt{2}}{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}-\sqrt{6}}{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.