Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{3}+4\right)}{\left(\sqrt{3}-4\right)\left(\sqrt{3}+4\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}-4} by multiplying numerator and denominator by \sqrt{3}+4.
\frac{\sqrt{3}\left(\sqrt{3}+4\right)}{\left(\sqrt{3}\right)^{2}-4^{2}}
Consider \left(\sqrt{3}-4\right)\left(\sqrt{3}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}+4\right)}{3-16}
Square \sqrt{3}. Square 4.
\frac{\sqrt{3}\left(\sqrt{3}+4\right)}{-13}
Subtract 16 from 3 to get -13.
\frac{\left(\sqrt{3}\right)^{2}+4\sqrt{3}}{-13}
Use the distributive property to multiply \sqrt{3} by \sqrt{3}+4.
\frac{3+4\sqrt{3}}{-13}
The square of \sqrt{3} is 3.