Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}+\frac{\sqrt{3}}{\sqrt{3}+1}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{\sqrt{3}}{\sqrt{3}+1}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{3}}{\sqrt{3}+1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{2}+\frac{\sqrt{3}}{\sqrt{3}+1}
Subtract 1 from 3 to get 2.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{2}+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{2}+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{2}+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{2}+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{\sqrt{3}\left(\sqrt{3}+1\right)+\sqrt{3}\left(\sqrt{3}-1\right)}{2}
Since \frac{\sqrt{3}\left(\sqrt{3}+1\right)}{2} and \frac{\sqrt{3}\left(\sqrt{3}-1\right)}{2} have the same denominator, add them by adding their numerators.
\frac{3+\sqrt{3}+3-\sqrt{3}}{2}
Do the multiplications in \sqrt{3}\left(\sqrt{3}+1\right)+\sqrt{3}\left(\sqrt{3}-1\right).
\frac{6}{2}
Do the calculations in 3+\sqrt{3}+3-\sqrt{3}.
3
Divide 6 by 2 to get 3.