Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+4\sqrt{2}-5\sqrt{5}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}+4\sqrt{2}-5\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(\sqrt{3}+4\sqrt{2}-5\sqrt{5}\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}-5\sqrt{5}\sqrt{2}}{2}
Use the distributive property to multiply \sqrt{3}+4\sqrt{2}-5\sqrt{5} by \sqrt{2}.
\frac{\sqrt{6}+4\left(\sqrt{2}\right)^{2}-5\sqrt{5}\sqrt{2}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{6}+4\times 2-5\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}+8-5\sqrt{5}\sqrt{2}}{2}
Multiply 4 and 2 to get 8.
\frac{\sqrt{6}+8-5\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.