Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{\left(3\sqrt{3}-3\right)\left(3\sqrt{3}+3\right)}
Rationalize the denominator of \frac{\sqrt{3}+3}{3\sqrt{3}-3} by multiplying numerator and denominator by 3\sqrt{3}+3.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{\left(3\sqrt{3}\right)^{2}-3^{2}}
Consider \left(3\sqrt{3}-3\right)\left(3\sqrt{3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{3^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{9\left(\sqrt{3}\right)^{2}-3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{9\times 3-3^{2}}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{27-3^{2}}
Multiply 9 and 3 to get 27.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{27-9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{3}+3\right)\left(3\sqrt{3}+3\right)}{18}
Subtract 9 from 27 to get 18.
\frac{3\left(\sqrt{3}\right)^{2}+3\sqrt{3}+9\sqrt{3}+9}{18}
Apply the distributive property by multiplying each term of \sqrt{3}+3 by each term of 3\sqrt{3}+3.
\frac{3\times 3+3\sqrt{3}+9\sqrt{3}+9}{18}
The square of \sqrt{3} is 3.
\frac{9+3\sqrt{3}+9\sqrt{3}+9}{18}
Multiply 3 and 3 to get 9.
\frac{9+12\sqrt{3}+9}{18}
Combine 3\sqrt{3} and 9\sqrt{3} to get 12\sqrt{3}.
\frac{18+12\sqrt{3}}{18}
Add 9 and 9 to get 18.