Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}=a+5\sqrt{3}
Rationalize the denominator of \frac{\sqrt{3}+2}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}=a+5\sqrt{3}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{3-4}=a+5\sqrt{3}
Square \sqrt{3}. Square 2.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{-1}=a+5\sqrt{3}
Subtract 4 from 3 to get -1.
\frac{\left(\sqrt{3}+2\right)^{2}}{-1}=a+5\sqrt{3}
Multiply \sqrt{3}+2 and \sqrt{3}+2 to get \left(\sqrt{3}+2\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4}{-1}=a+5\sqrt{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\right)^{2}.
\frac{3+4\sqrt{3}+4}{-1}=a+5\sqrt{3}
The square of \sqrt{3} is 3.
\frac{7+4\sqrt{3}}{-1}=a+5\sqrt{3}
Add 3 and 4 to get 7.
-7-4\sqrt{3}=a+5\sqrt{3}
Anything divided by -1 gives its opposite. To find the opposite of 7+4\sqrt{3}, find the opposite of each term.
a+5\sqrt{3}=-7-4\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
a=-7-4\sqrt{3}-5\sqrt{3}
Subtract 5\sqrt{3} from both sides.
a=-7-9\sqrt{3}
Combine -4\sqrt{3} and -5\sqrt{3} to get -9\sqrt{3}.