Evaluate
\frac{-5\sqrt{3}-7}{13}\approx -1.204634926
Share
Copied to clipboard
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+4\right)}{\left(\sqrt{3}-4\right)\left(\sqrt{3}+4\right)}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-4} by multiplying numerator and denominator by \sqrt{3}+4.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+4\right)}{\left(\sqrt{3}\right)^{2}-4^{2}}
Consider \left(\sqrt{3}-4\right)\left(\sqrt{3}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+4\right)}{3-16}
Square \sqrt{3}. Square 4.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+4\right)}{-13}
Subtract 16 from 3 to get -13.
\frac{\left(\sqrt{3}\right)^{2}+4\sqrt{3}+\sqrt{3}+4}{-13}
Apply the distributive property by multiplying each term of \sqrt{3}+1 by each term of \sqrt{3}+4.
\frac{3+4\sqrt{3}+\sqrt{3}+4}{-13}
The square of \sqrt{3} is 3.
\frac{3+5\sqrt{3}+4}{-13}
Combine 4\sqrt{3} and \sqrt{3} to get 5\sqrt{3}.
\frac{7+5\sqrt{3}}{-13}
Add 3 and 4 to get 7.
\frac{-7-5\sqrt{3}}{13}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}