Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Subtract 5 from 3 to get -2.
\frac{\left(\sqrt{3}+\sqrt{5}\right)^{2}}{-2}
Multiply \sqrt{3}+\sqrt{5} and \sqrt{3}+\sqrt{5} to get \left(\sqrt{3}+\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{5}\right)^{2}.
\frac{3+2\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-2}
The square of \sqrt{3} is 3.
\frac{3+2\sqrt{15}+\left(\sqrt{5}\right)^{2}}{-2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{3+2\sqrt{15}+5}{-2}
The square of \sqrt{5} is 5.
\frac{8+2\sqrt{15}}{-2}
Add 3 and 5 to get 8.
-4-\sqrt{15}
Divide each term of 8+2\sqrt{15} by -2 to get -4-\sqrt{15}.