Solve for b
b=-\frac{\sqrt{6}a}{6}+\frac{13\sqrt{6}}{114}+\frac{5}{19}
Solve for a
a=-\sqrt{6}b+\frac{5\sqrt{6}}{19}+\frac{13}{19}
Share
Copied to clipboard
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{\left(3\sqrt{3}-2\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}=a+b\sqrt{6}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{2}}{3\sqrt{3}-2\sqrt{2}} by multiplying numerator and denominator by 3\sqrt{3}+2\sqrt{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{\left(3\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Consider \left(3\sqrt{3}-2\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{3^{2}\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{9\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{9\times 3-\left(-2\sqrt{2}\right)^{2}}=a+b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{27-\left(-2\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Multiply 9 and 3 to get 27.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{27-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{27-4\left(\sqrt{2}\right)^{2}}=a+b\sqrt{6}
Calculate -2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{27-4\times 2}=a+b\sqrt{6}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{27-8}=a+b\sqrt{6}
Multiply 4 and 2 to get 8.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(3\sqrt{3}+2\sqrt{2}\right)}{19}=a+b\sqrt{6}
Subtract 8 from 27 to get 19.
\frac{3\left(\sqrt{3}\right)^{2}+5\sqrt{3}\sqrt{2}+2\left(\sqrt{2}\right)^{2}}{19}=a+b\sqrt{6}
Use the distributive property to multiply \sqrt{3}+\sqrt{2} by 3\sqrt{3}+2\sqrt{2} and combine like terms.
\frac{3\times 3+5\sqrt{3}\sqrt{2}+2\left(\sqrt{2}\right)^{2}}{19}=a+b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{9+5\sqrt{3}\sqrt{2}+2\left(\sqrt{2}\right)^{2}}{19}=a+b\sqrt{6}
Multiply 3 and 3 to get 9.
\frac{9+5\sqrt{6}+2\left(\sqrt{2}\right)^{2}}{19}=a+b\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{9+5\sqrt{6}+2\times 2}{19}=a+b\sqrt{6}
The square of \sqrt{2} is 2.
\frac{9+5\sqrt{6}+4}{19}=a+b\sqrt{6}
Multiply 2 and 2 to get 4.
\frac{13+5\sqrt{6}}{19}=a+b\sqrt{6}
Add 9 and 4 to get 13.
\frac{13}{19}+\frac{5}{19}\sqrt{6}=a+b\sqrt{6}
Divide each term of 13+5\sqrt{6} by 19 to get \frac{13}{19}+\frac{5}{19}\sqrt{6}.
a+b\sqrt{6}=\frac{13}{19}+\frac{5}{19}\sqrt{6}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{6}=\frac{13}{19}+\frac{5}{19}\sqrt{6}-a
Subtract a from both sides.
\sqrt{6}b=-a+\frac{5\sqrt{6}}{19}+\frac{13}{19}
The equation is in standard form.
\frac{\sqrt{6}b}{\sqrt{6}}=\frac{-a+\frac{5\sqrt{6}}{19}+\frac{13}{19}}{\sqrt{6}}
Divide both sides by \sqrt{6}.
b=\frac{-a+\frac{5\sqrt{6}}{19}+\frac{13}{19}}{\sqrt{6}}
Dividing by \sqrt{6} undoes the multiplication by \sqrt{6}.
b=-\frac{\sqrt{6}a}{6}+\frac{13\sqrt{6}}{114}+\frac{5}{19}
Divide \frac{13}{19}+\frac{5\sqrt{6}}{19}-a by \sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}