Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{65}+1\right)}{\left(\sqrt{65}-1\right)\left(\sqrt{65}+1\right)}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{2}}{\sqrt{65}-1} by multiplying numerator and denominator by \sqrt{65}+1.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{65}+1\right)}{\left(\sqrt{65}\right)^{2}-1^{2}}
Consider \left(\sqrt{65}-1\right)\left(\sqrt{65}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{65}+1\right)}{65-1}
Square \sqrt{65}. Square 1.
\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{65}+1\right)}{64}
Subtract 1 from 65 to get 64.
\frac{\sqrt{3}\sqrt{65}+\sqrt{3}+\sqrt{2}\sqrt{65}+\sqrt{2}}{64}
Apply the distributive property by multiplying each term of \sqrt{3}+\sqrt{2} by each term of \sqrt{65}+1.
\frac{\sqrt{195}+\sqrt{3}+\sqrt{2}\sqrt{65}+\sqrt{2}}{64}
To multiply \sqrt{3} and \sqrt{65}, multiply the numbers under the square root.
\frac{\sqrt{195}+\sqrt{3}+\sqrt{130}+\sqrt{2}}{64}
To multiply \sqrt{2} and \sqrt{65}, multiply the numbers under the square root.