Evaluate
\frac{\sqrt{1946}}{9}\approx 4.901498889
Share
Copied to clipboard
\frac{\sqrt{3892}}{\sqrt{27\times 6}}
Multiply 28 and 139 to get 3892.
\frac{2\sqrt{973}}{\sqrt{27\times 6}}
Factor 3892=2^{2}\times 973. Rewrite the square root of the product \sqrt{2^{2}\times 973} as the product of square roots \sqrt{2^{2}}\sqrt{973}. Take the square root of 2^{2}.
\frac{2\sqrt{973}}{\sqrt{162}}
Multiply 27 and 6 to get 162.
\frac{2\sqrt{973}}{9\sqrt{2}}
Factor 162=9^{2}\times 2. Rewrite the square root of the product \sqrt{9^{2}\times 2} as the product of square roots \sqrt{9^{2}}\sqrt{2}. Take the square root of 9^{2}.
\frac{2\sqrt{973}\sqrt{2}}{9\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{973}}{9\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\sqrt{973}\sqrt{2}}{9\times 2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{1946}}{9\times 2}
To multiply \sqrt{973} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\sqrt{1946}}{18}
Multiply 9 and 2 to get 18.
\frac{1}{9}\sqrt{1946}
Divide 2\sqrt{1946} by 18 to get \frac{1}{9}\sqrt{1946}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}