Evaluate
\frac{9\sqrt{5}}{10}-\frac{3}{2}\approx 0.51246118
Share
Copied to clipboard
\frac{3\sqrt{3}-\sqrt{15}}{\sqrt{2}}\times \frac{\sqrt{3}}{\sqrt{10}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{3}}{\sqrt{10}}
Rationalize the denominator of \frac{3\sqrt{3}-\sqrt{15}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}}{2}\times \frac{\sqrt{3}}{\sqrt{10}}
The square of \sqrt{2} is 2.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}}{2}\times \frac{\sqrt{3}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}}{2}\times \frac{\sqrt{3}\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}}{2}\times \frac{\sqrt{30}}{10}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}\sqrt{30}}{2\times 10}
Multiply \frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}}{2} times \frac{\sqrt{30}}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\sqrt{2}\sqrt{2}\sqrt{15}}{2\times 10}
Factor 30=2\times 15. Rewrite the square root of the product \sqrt{2\times 15} as the product of square roots \sqrt{2}\sqrt{15}.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\times 2\sqrt{15}}{2\times 10}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\left(3\sqrt{3}-\sqrt{15}\right)\times 2\sqrt{15}}{20}
Multiply 2 and 10 to get 20.
\left(3\sqrt{3}-\sqrt{15}\right)\times \frac{1}{10}\sqrt{15}
Divide \left(3\sqrt{3}-\sqrt{15}\right)\times 2\sqrt{15} by 20 to get \left(3\sqrt{3}-\sqrt{15}\right)\times \frac{1}{10}\sqrt{15}.
\left(3\sqrt{3}\times \frac{1}{10}-\sqrt{15}\times \frac{1}{10}\right)\sqrt{15}
Use the distributive property to multiply 3\sqrt{3}-\sqrt{15} by \frac{1}{10}.
\left(\frac{3}{10}\sqrt{3}-\sqrt{15}\times \frac{1}{10}\right)\sqrt{15}
Multiply 3 and \frac{1}{10} to get \frac{3}{10}.
\left(\frac{3}{10}\sqrt{3}-\frac{1}{10}\sqrt{15}\right)\sqrt{15}
Multiply -1 and \frac{1}{10} to get -\frac{1}{10}.
\frac{3}{10}\sqrt{3}\sqrt{15}-\frac{1}{10}\sqrt{15}\sqrt{15}
Use the distributive property to multiply \frac{3}{10}\sqrt{3}-\frac{1}{10}\sqrt{15} by \sqrt{15}.
\frac{3}{10}\sqrt{3}\sqrt{15}-\frac{1}{10}\times 15
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{3}{10}\sqrt{3}\sqrt{3}\sqrt{5}-\frac{1}{10}\times 15
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3}{10}\times 3\sqrt{5}-\frac{1}{10}\times 15
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\times 3}{10}\sqrt{5}-\frac{1}{10}\times 15
Express \frac{3}{10}\times 3 as a single fraction.
\frac{9}{10}\sqrt{5}-\frac{1}{10}\times 15
Multiply 3 and 3 to get 9.
\frac{9}{10}\sqrt{5}+\frac{-15}{10}
Express -\frac{1}{10}\times 15 as a single fraction.
\frac{9}{10}\sqrt{5}-\frac{3}{2}
Reduce the fraction \frac{-15}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}