Evaluate
-\frac{11\sqrt{10}}{15}-\frac{11}{3}\approx -5.985670284
Share
Copied to clipboard
\frac{5-16}{\sqrt{25}-\sqrt{10}}
Calculate the square root of 25 and get 5.
\frac{-11}{\sqrt{25}-\sqrt{10}}
Subtract 16 from 5 to get -11.
\frac{-11}{5-\sqrt{10}}
Calculate the square root of 25 and get 5.
\frac{-11\left(5+\sqrt{10}\right)}{\left(5-\sqrt{10}\right)\left(5+\sqrt{10}\right)}
Rationalize the denominator of \frac{-11}{5-\sqrt{10}} by multiplying numerator and denominator by 5+\sqrt{10}.
\frac{-11\left(5+\sqrt{10}\right)}{5^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(5-\sqrt{10}\right)\left(5+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-11\left(5+\sqrt{10}\right)}{25-10}
Square 5. Square \sqrt{10}.
\frac{-11\left(5+\sqrt{10}\right)}{15}
Subtract 10 from 25 to get 15.
\frac{-55-11\sqrt{10}}{15}
Use the distributive property to multiply -11 by 5+\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}