Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5+\sqrt{45}}{\sqrt{45}-\sqrt{30}}
Calculate the square root of 25 and get 5.
\frac{5+3\sqrt{5}}{\sqrt{45}-\sqrt{30}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{5+3\sqrt{5}}{3\sqrt{5}-\sqrt{30}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{\left(3\sqrt{5}-\sqrt{30}\right)\left(3\sqrt{5}+\sqrt{30}\right)}
Rationalize the denominator of \frac{5+3\sqrt{5}}{3\sqrt{5}-\sqrt{30}} by multiplying numerator and denominator by 3\sqrt{5}+\sqrt{30}.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{\left(3\sqrt{5}\right)^{2}-\left(\sqrt{30}\right)^{2}}
Consider \left(3\sqrt{5}-\sqrt{30}\right)\left(3\sqrt{5}+\sqrt{30}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{30}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{9\left(\sqrt{5}\right)^{2}-\left(\sqrt{30}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{9\times 5-\left(\sqrt{30}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{45-\left(\sqrt{30}\right)^{2}}
Multiply 9 and 5 to get 45.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{45-30}
The square of \sqrt{30} is 30.
\frac{\left(5+3\sqrt{5}\right)\left(3\sqrt{5}+\sqrt{30}\right)}{15}
Subtract 30 from 45 to get 15.
\frac{15\sqrt{5}+5\sqrt{30}+9\left(\sqrt{5}\right)^{2}+3\sqrt{5}\sqrt{30}}{15}
Apply the distributive property by multiplying each term of 5+3\sqrt{5} by each term of 3\sqrt{5}+\sqrt{30}.
\frac{15\sqrt{5}+5\sqrt{30}+9\times 5+3\sqrt{5}\sqrt{30}}{15}
The square of \sqrt{5} is 5.
\frac{15\sqrt{5}+5\sqrt{30}+45+3\sqrt{5}\sqrt{30}}{15}
Multiply 9 and 5 to get 45.
\frac{15\sqrt{5}+5\sqrt{30}+45+3\sqrt{5}\sqrt{5}\sqrt{6}}{15}
Factor 30=5\times 6. Rewrite the square root of the product \sqrt{5\times 6} as the product of square roots \sqrt{5}\sqrt{6}.
\frac{15\sqrt{5}+5\sqrt{30}+45+3\times 5\sqrt{6}}{15}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15\sqrt{5}+5\sqrt{30}+45+15\sqrt{6}}{15}
Multiply 3 and 5 to get 15.