Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{\left(\sqrt{23}+\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}
Rationalize the denominator of \frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}} by multiplying numerator and denominator by \sqrt{23}-\sqrt{37}.
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{\left(\sqrt{23}\right)^{2}-\left(\sqrt{37}\right)^{2}}
Consider \left(\sqrt{23}+\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{23-37}
Square \sqrt{23}. Square \sqrt{37}.
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{-14}
Subtract 37 from 23 to get -14.
\frac{\left(\sqrt{23}-\sqrt{37}\right)^{2}}{-14}
Multiply \sqrt{23}-\sqrt{37} and \sqrt{23}-\sqrt{37} to get \left(\sqrt{23}-\sqrt{37}\right)^{2}.
\frac{\left(\sqrt{23}\right)^{2}-2\sqrt{23}\sqrt{37}+\left(\sqrt{37}\right)^{2}}{-14}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{23}-\sqrt{37}\right)^{2}.
\frac{23-2\sqrt{23}\sqrt{37}+\left(\sqrt{37}\right)^{2}}{-14}
The square of \sqrt{23} is 23.
\frac{23-2\sqrt{851}+\left(\sqrt{37}\right)^{2}}{-14}
To multiply \sqrt{23} and \sqrt{37}, multiply the numbers under the square root.
\frac{23-2\sqrt{851}+37}{-14}
The square of \sqrt{37} is 37.
\frac{60-2\sqrt{851}}{-14}
Add 23 and 37 to get 60.