Evaluate
\frac{\sqrt{851}-30}{7}\approx -0.118299387
Share
Copied to clipboard
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{\left(\sqrt{23}+\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}
Rationalize the denominator of \frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}} by multiplying numerator and denominator by \sqrt{23}-\sqrt{37}.
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{\left(\sqrt{23}\right)^{2}-\left(\sqrt{37}\right)^{2}}
Consider \left(\sqrt{23}+\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{23-37}
Square \sqrt{23}. Square \sqrt{37}.
\frac{\left(\sqrt{23}-\sqrt{37}\right)\left(\sqrt{23}-\sqrt{37}\right)}{-14}
Subtract 37 from 23 to get -14.
\frac{\left(\sqrt{23}-\sqrt{37}\right)^{2}}{-14}
Multiply \sqrt{23}-\sqrt{37} and \sqrt{23}-\sqrt{37} to get \left(\sqrt{23}-\sqrt{37}\right)^{2}.
\frac{\left(\sqrt{23}\right)^{2}-2\sqrt{23}\sqrt{37}+\left(\sqrt{37}\right)^{2}}{-14}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{23}-\sqrt{37}\right)^{2}.
\frac{23-2\sqrt{23}\sqrt{37}+\left(\sqrt{37}\right)^{2}}{-14}
The square of \sqrt{23} is 23.
\frac{23-2\sqrt{851}+\left(\sqrt{37}\right)^{2}}{-14}
To multiply \sqrt{23} and \sqrt{37}, multiply the numbers under the square root.
\frac{23-2\sqrt{851}+37}{-14}
The square of \sqrt{37} is 37.
\frac{60-2\sqrt{851}}{-14}
Add 23 and 37 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}