Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{5}+\sqrt{12}}{\sqrt{5}-\sqrt{3}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{2\sqrt{5}+2\sqrt{3}}{\sqrt{5}-\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(2\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{5}+2\sqrt{3}}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
\frac{\left(2\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(2\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{2\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+2\sqrt{3}\sqrt{5}+2\left(\sqrt{3}\right)^{2}}{2}
Apply the distributive property by multiplying each term of 2\sqrt{5}+2\sqrt{3} by each term of \sqrt{5}+\sqrt{3}.
\frac{2\times 5+2\sqrt{5}\sqrt{3}+2\sqrt{3}\sqrt{5}+2\left(\sqrt{3}\right)^{2}}{2}
The square of \sqrt{5} is 5.
\frac{10+2\sqrt{5}\sqrt{3}+2\sqrt{3}\sqrt{5}+2\left(\sqrt{3}\right)^{2}}{2}
Multiply 2 and 5 to get 10.
\frac{10+2\sqrt{15}+2\sqrt{3}\sqrt{5}+2\left(\sqrt{3}\right)^{2}}{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{10+2\sqrt{15}+2\sqrt{15}+2\left(\sqrt{3}\right)^{2}}{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{10+4\sqrt{15}+2\left(\sqrt{3}\right)^{2}}{2}
Combine 2\sqrt{15} and 2\sqrt{15} to get 4\sqrt{15}.
\frac{10+4\sqrt{15}+2\times 3}{2}
The square of \sqrt{3} is 3.
\frac{10+4\sqrt{15}+6}{2}
Multiply 2 and 3 to get 6.
\frac{16+4\sqrt{15}}{2}
Add 10 and 6 to get 16.