Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
\frac{\sqrt{89.1}}{\sqrt{1.1}}
To multiply \sqrt{2.7} and \sqrt{33}, multiply the numbers under the square root.
\frac{\sqrt{89.1}\sqrt{1.1}}{\left(\sqrt{1.1}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{89.1}}{\sqrt{1.1}} by multiplying numerator and denominator by \sqrt{1.1}.
\frac{\sqrt{89.1}\sqrt{1.1}}{1.1}
The square of \sqrt{1.1} is 1.1.
\frac{\sqrt{98.01}}{1.1}
To multiply \sqrt{89.1} and \sqrt{1.1}, multiply the numbers under the square root.
\frac{9.9}{1.1}
Calculate the square root of 98.01 and get 9.9.
\frac{99}{11}
Expand \frac{9.9}{1.1} by multiplying both numerator and the denominator by 10.
9
Divide 99 by 11 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}