Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\sqrt{2x^{2}+5}=5\left(4x+1\right)
Variable x cannot be equal to -\frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by 3\left(4x+1\right), the least common multiple of 4x+1,3.
3\sqrt{2x^{2}+5}=20x+5
Use the distributive property to multiply 5 by 4x+1.
3\sqrt{2x^{2}+5}-20x=5
Subtract 20x from both sides.
3\sqrt{2x^{2}+5}=5+20x
Subtract -20x from both sides of the equation.
\left(3\sqrt{2x^{2}+5}\right)^{2}=\left(20x+5\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{2x^{2}+5}\right)^{2}=\left(20x+5\right)^{2}
Expand \left(3\sqrt{2x^{2}+5}\right)^{2}.
9\left(\sqrt{2x^{2}+5}\right)^{2}=\left(20x+5\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(2x^{2}+5\right)=\left(20x+5\right)^{2}
Calculate \sqrt{2x^{2}+5} to the power of 2 and get 2x^{2}+5.
18x^{2}+45=\left(20x+5\right)^{2}
Use the distributive property to multiply 9 by 2x^{2}+5.
18x^{2}+45=400x^{2}+200x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(20x+5\right)^{2}.
18x^{2}+45-400x^{2}=200x+25
Subtract 400x^{2} from both sides.
-382x^{2}+45=200x+25
Combine 18x^{2} and -400x^{2} to get -382x^{2}.
-382x^{2}+45-200x=25
Subtract 200x from both sides.
-382x^{2}+45-200x-25=0
Subtract 25 from both sides.
-382x^{2}+20-200x=0
Subtract 25 from 45 to get 20.
-382x^{2}-200x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-382\right)\times 20}}{2\left(-382\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -382 for a, -200 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-382\right)\times 20}}{2\left(-382\right)}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000+1528\times 20}}{2\left(-382\right)}
Multiply -4 times -382.
x=\frac{-\left(-200\right)±\sqrt{40000+30560}}{2\left(-382\right)}
Multiply 1528 times 20.
x=\frac{-\left(-200\right)±\sqrt{70560}}{2\left(-382\right)}
Add 40000 to 30560.
x=\frac{-\left(-200\right)±84\sqrt{10}}{2\left(-382\right)}
Take the square root of 70560.
x=\frac{200±84\sqrt{10}}{2\left(-382\right)}
The opposite of -200 is 200.
x=\frac{200±84\sqrt{10}}{-764}
Multiply 2 times -382.
x=\frac{84\sqrt{10}+200}{-764}
Now solve the equation x=\frac{200±84\sqrt{10}}{-764} when ± is plus. Add 200 to 84\sqrt{10}.
x=\frac{-21\sqrt{10}-50}{191}
Divide 200+84\sqrt{10} by -764.
x=\frac{200-84\sqrt{10}}{-764}
Now solve the equation x=\frac{200±84\sqrt{10}}{-764} when ± is minus. Subtract 84\sqrt{10} from 200.
x=\frac{21\sqrt{10}-50}{191}
Divide 200-84\sqrt{10} by -764.
x=\frac{-21\sqrt{10}-50}{191} x=\frac{21\sqrt{10}-50}{191}
The equation is now solved.
\frac{\sqrt{2\times \left(\frac{-21\sqrt{10}-50}{191}\right)^{2}+5}}{4\times \frac{-21\sqrt{10}-50}{191}+1}=\frac{5}{3}
Substitute \frac{-21\sqrt{10}-50}{191} for x in the equation \frac{\sqrt{2x^{2}+5}}{4x+1}=\frac{5}{3}.
-\frac{5}{3}=\frac{5}{3}
Simplify. The value x=\frac{-21\sqrt{10}-50}{191} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{\sqrt{2\times \left(\frac{21\sqrt{10}-50}{191}\right)^{2}+5}}{4\times \frac{21\sqrt{10}-50}{191}+1}=\frac{5}{3}
Substitute \frac{21\sqrt{10}-50}{191} for x in the equation \frac{\sqrt{2x^{2}+5}}{4x+1}=\frac{5}{3}.
\frac{5}{3}=\frac{5}{3}
Simplify. The value x=\frac{21\sqrt{10}-50}{191} satisfies the equation.
x=\frac{21\sqrt{10}-50}{191}
Equation 3\sqrt{2x^{2}+5}=20x+5 has a unique solution.