Skip to main content
Solve for v (complex solution)
Tick mark Image
Solve for v
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x+3}-\sqrt{x}=\left(x+1\right)\left(x+3\right)v
Multiply both sides of the equation by \left(x+1\right)\left(x+3\right).
\sqrt{2x+3}-\sqrt{x}=\left(x^{2}+4x+3\right)v
Use the distributive property to multiply x+1 by x+3 and combine like terms.
\sqrt{2x+3}-\sqrt{x}=x^{2}v+4xv+3v
Use the distributive property to multiply x^{2}+4x+3 by v.
x^{2}v+4xv+3v=\sqrt{2x+3}-\sqrt{x}
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+4x+3\right)v=\sqrt{2x+3}-\sqrt{x}
Combine all terms containing v.
\frac{\left(x^{2}+4x+3\right)v}{x^{2}+4x+3}=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Divide both sides by x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Dividing by x^{2}+4x+3 undoes the multiplication by x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{\left(x+1\right)\left(x+3\right)}
Divide \sqrt{2x+3}-\sqrt{x} by x^{2}+4x+3.
\sqrt{2x+3}-\sqrt{x}=\left(x+1\right)\left(x+3\right)v
Multiply both sides of the equation by \left(x+1\right)\left(x+3\right).
\sqrt{2x+3}-\sqrt{x}=\left(x^{2}+4x+3\right)v
Use the distributive property to multiply x+1 by x+3 and combine like terms.
\sqrt{2x+3}-\sqrt{x}=x^{2}v+4xv+3v
Use the distributive property to multiply x^{2}+4x+3 by v.
x^{2}v+4xv+3v=\sqrt{2x+3}-\sqrt{x}
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+4x+3\right)v=\sqrt{2x+3}-\sqrt{x}
Combine all terms containing v.
\frac{\left(x^{2}+4x+3\right)v}{x^{2}+4x+3}=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Divide both sides by x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{x^{2}+4x+3}
Dividing by x^{2}+4x+3 undoes the multiplication by x^{2}+4x+3.
v=\frac{\sqrt{2x+3}-\sqrt{x}}{\left(x+1\right)\left(x+3\right)}
Divide \sqrt{2x+3}-\sqrt{x} by x^{2}+4x+3.