\frac { \sqrt { 2 ( 2.16 \times 10 ^ { - 19 } } } { 9.11 \times 10 ^ { - 31 } }
Evaluate
\frac{120000000000000000000000\sqrt{30}}{911}\approx 7.214786707 \cdot 10^{20}
Share
Copied to clipboard
\frac{\sqrt{4.32\times 10^{-19}}}{9.11\times 10^{-31}}
Multiply 2 and 2.16 to get 4.32.
\frac{\sqrt{4.32\times \frac{1}{10000000000000000000}}}{9.11\times 10^{-31}}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{\sqrt{\frac{27}{62500000000000000000}}}{9.11\times 10^{-31}}
Multiply 4.32 and \frac{1}{10000000000000000000} to get \frac{27}{62500000000000000000}.
\frac{\frac{\sqrt{27}}{\sqrt{62500000000000000000}}}{9.11\times 10^{-31}}
Rewrite the square root of the division \sqrt{\frac{27}{62500000000000000000}} as the division of square roots \frac{\sqrt{27}}{\sqrt{62500000000000000000}}.
\frac{\frac{3\sqrt{3}}{\sqrt{62500000000000000000}}}{9.11\times 10^{-31}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\frac{3\sqrt{3}}{2500000000\sqrt{10}}}{9.11\times 10^{-31}}
Factor 62500000000000000000=2500000000^{2}\times 10. Rewrite the square root of the product \sqrt{2500000000^{2}\times 10} as the product of square roots \sqrt{2500000000^{2}}\sqrt{10}. Take the square root of 2500000000^{2}.
\frac{\frac{3\sqrt{3}\sqrt{10}}{2500000000\left(\sqrt{10}\right)^{2}}}{9.11\times 10^{-31}}
Rationalize the denominator of \frac{3\sqrt{3}}{2500000000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\frac{3\sqrt{3}\sqrt{10}}{2500000000\times 10}}{9.11\times 10^{-31}}
The square of \sqrt{10} is 10.
\frac{\frac{3\sqrt{30}}{2500000000\times 10}}{9.11\times 10^{-31}}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{\frac{3\sqrt{30}}{25000000000}}{9.11\times 10^{-31}}
Multiply 2500000000 and 10 to get 25000000000.
\frac{\frac{3\sqrt{30}}{25000000000}}{9.11\times \frac{1}{10000000000000000000000000000000}}
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
\frac{\frac{3\sqrt{30}}{25000000000}}{\frac{911}{1000000000000000000000000000000000}}
Multiply 9.11 and \frac{1}{10000000000000000000000000000000} to get \frac{911}{1000000000000000000000000000000000}.
\frac{3\sqrt{30}\times 1000000000000000000000000000000000}{25000000000\times 911}
Divide \frac{3\sqrt{30}}{25000000000} by \frac{911}{1000000000000000000000000000000000} by multiplying \frac{3\sqrt{30}}{25000000000} by the reciprocal of \frac{911}{1000000000000000000000000000000000}.
\frac{3\times 40000000000000000000000\sqrt{30}}{911}
Cancel out 25000000000 in both numerator and denominator.
\frac{120000000000000000000000\sqrt{30}}{911}
Multiply 3 and 40000000000000000000000 to get 120000000000000000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}