Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}-5\right)\left(\sqrt{5}-5\right)}{\left(\sqrt{5}+5\right)\left(\sqrt{5}-5\right)}
Rationalize the denominator of \frac{\sqrt{2}-5}{\sqrt{5}+5} by multiplying numerator and denominator by \sqrt{5}-5.
\frac{\left(\sqrt{2}-5\right)\left(\sqrt{5}-5\right)}{\left(\sqrt{5}\right)^{2}-5^{2}}
Consider \left(\sqrt{5}+5\right)\left(\sqrt{5}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-5\right)\left(\sqrt{5}-5\right)}{5-25}
Square \sqrt{5}. Square 5.
\frac{\left(\sqrt{2}-5\right)\left(\sqrt{5}-5\right)}{-20}
Subtract 25 from 5 to get -20.
\frac{\sqrt{2}\sqrt{5}-5\sqrt{2}-5\sqrt{5}+25}{-20}
Apply the distributive property by multiplying each term of \sqrt{2}-5 by each term of \sqrt{5}-5.
\frac{\sqrt{10}-5\sqrt{2}-5\sqrt{5}+25}{-20}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{-\sqrt{10}+5\sqrt{2}+5\sqrt{5}-25}{20}
Multiply both numerator and denominator by -1.