Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{\left(\sqrt{5}+4\right)\left(\sqrt{5}-4\right)}
Rationalize the denominator of \frac{\sqrt{2}-4}{\sqrt{5}+4} by multiplying numerator and denominator by \sqrt{5}-4.
\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{\left(\sqrt{5}\right)^{2}-4^{2}}
Consider \left(\sqrt{5}+4\right)\left(\sqrt{5}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{5-16}
Square \sqrt{5}. Square 4.
\frac{\left(\sqrt{2}-4\right)\left(\sqrt{5}-4\right)}{-11}
Subtract 16 from 5 to get -11.
\frac{\sqrt{2}\sqrt{5}-4\sqrt{2}-4\sqrt{5}+16}{-11}
Apply the distributive property by multiplying each term of \sqrt{2}-4 by each term of \sqrt{5}-4.
\frac{\sqrt{10}-4\sqrt{2}-4\sqrt{5}+16}{-11}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{-\sqrt{10}+4\sqrt{2}+4\sqrt{5}-16}{11}
Multiply both numerator and denominator by -1.