Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{2}-2\sqrt{3}}{\sqrt{2}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}+\sqrt{3}.
\frac{\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
\frac{\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
-\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Anything divided by -1 gives its opposite.
-\left(\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}\right)
Apply the distributive property by multiplying each term of \sqrt{2}-2\sqrt{3} by each term of \sqrt{2}+\sqrt{3}.
-\left(2+\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{2} is 2.
-\left(2+\sqrt{6}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-\left(2+\sqrt{6}-2\sqrt{6}-2\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\left(2-\sqrt{6}-2\left(\sqrt{3}\right)^{2}\right)
Combine \sqrt{6} and -2\sqrt{6} to get -\sqrt{6}.
-\left(2-\sqrt{6}-2\times 3\right)
The square of \sqrt{3} is 3.
-\left(2-\sqrt{6}-6\right)
Multiply -2 and 3 to get -6.
-\left(-4-\sqrt{6}\right)
Subtract 6 from 2 to get -4.
-\left(-4\right)-\left(-\sqrt{6}\right)
To find the opposite of -4-\sqrt{6}, find the opposite of each term.
4-\left(-\sqrt{6}\right)
The opposite of -4 is 4.
4+\sqrt{6}
The opposite of -\sqrt{6} is \sqrt{6}.