Evaluate
\frac{2\sqrt{6}-7}{5}\approx -0.420204103
Factor
\frac{2 \sqrt{6} - 7}{5} = -0.4202041028867288
Share
Copied to clipboard
\frac{\sqrt{2}-2\sqrt{3}}{\sqrt{2}+2\sqrt{3}}\times 1
Divide 3\sqrt{2}-2\sqrt{3} by 3\sqrt{2}-2\sqrt{3} to get 1.
\frac{\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{2}-2\sqrt{3}}{\sqrt{2}+2\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-2\sqrt{3}.
\frac{\left(\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
Consider \left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\sqrt{3}\right)^{2}}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
Multiply \sqrt{2}-2\sqrt{3} and \sqrt{2}-2\sqrt{3} to get \left(\sqrt{2}-2\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-2\sqrt{3}\right)^{2}.
\frac{2-4\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
The square of \sqrt{2} is 2.
\frac{2-4\sqrt{6}+4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2-4\sqrt{6}+4\times 3}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
The square of \sqrt{3} is 3.
\frac{2-4\sqrt{6}+12}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
Multiply 4 and 3 to get 12.
\frac{14-4\sqrt{6}}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}\times 1
Add 2 and 12 to get 14.
\frac{14-4\sqrt{6}}{2-\left(2\sqrt{3}\right)^{2}}\times 1
The square of \sqrt{2} is 2.
\frac{14-4\sqrt{6}}{2-2^{2}\left(\sqrt{3}\right)^{2}}\times 1
Expand \left(2\sqrt{3}\right)^{2}.
\frac{14-4\sqrt{6}}{2-4\left(\sqrt{3}\right)^{2}}\times 1
Calculate 2 to the power of 2 and get 4.
\frac{14-4\sqrt{6}}{2-4\times 3}\times 1
The square of \sqrt{3} is 3.
\frac{14-4\sqrt{6}}{2-12}\times 1
Multiply 4 and 3 to get 12.
\frac{14-4\sqrt{6}}{-10}\times 1
Subtract 12 from 2 to get -10.
\frac{14-4\sqrt{6}}{-10}
Express \frac{14-4\sqrt{6}}{-10}\times 1 as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}