Evaluate
\frac{-\sqrt{2}-3}{7}\approx -0.630601937
Share
Copied to clipboard
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Rationalize the denominator of \frac{\sqrt{2}-1}{2\sqrt{2}+1} by multiplying numerator and denominator by 2\sqrt{2}-1.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Consider \left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{4\times 2-1^{2}}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{8-1^{2}}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Multiply 4 and 2 to get 8.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{8-1}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Calculate 1 to the power of 2 and get 1.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\sqrt{2}+1}{-\sqrt{2}+1}
Subtract 1 from 8 to get 7.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}{\left(-\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}
Rationalize the denominator of \frac{\sqrt{2}+1}{-\sqrt{2}+1} by multiplying numerator and denominator by -\sqrt{2}-1.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}{\left(-\sqrt{2}\right)^{2}-1^{2}}
Consider \left(-\sqrt{2}+1\right)\left(-\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate -\sqrt{2} to the power of 2 and get \left(\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1}
Calculate 1 to the power of 2 and get 1.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}{2-1}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\times \frac{\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)}{1}
Subtract 1 from 2 to get 1.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\left(\sqrt{2}+1\right)\left(-\sqrt{2}-1\right)
Anything divided by one gives itself.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)
Apply the distributive property by multiplying each term of \sqrt{2}+1 by each term of -\sqrt{2}-1.
\frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)}{7}
Express \frac{\left(\sqrt{2}-1\right)\left(2\sqrt{2}-1\right)}{7}\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right) as a single fraction.
\frac{\left(2\left(\sqrt{2}\right)^{2}-\sqrt{2}-2\sqrt{2}+1\right)\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)}{7}
Apply the distributive property by multiplying each term of \sqrt{2}-1 by each term of 2\sqrt{2}-1.
\frac{\left(2\times 2-\sqrt{2}-2\sqrt{2}+1\right)\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)}{7}
The square of \sqrt{2} is 2.
\frac{\left(4-\sqrt{2}-2\sqrt{2}+1\right)\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)}{7}
Multiply 2 and 2 to get 4.
\frac{\left(4-3\sqrt{2}+1\right)\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)}{7}
Combine -\sqrt{2} and -2\sqrt{2} to get -3\sqrt{2}.
\frac{\left(5-3\sqrt{2}\right)\left(\sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1\right)}{7}
Add 4 and 1 to get 5.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)-5\sqrt{2}+5\left(-\sqrt{2}\right)-5-3\left(-\sqrt{2}\right)\left(\sqrt{2}\right)^{2}+3\left(\sqrt{2}\right)^{2}-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
Apply the distributive property by multiplying each term of 5-3\sqrt{2} by each term of \sqrt{2}\left(-\sqrt{2}\right)-\sqrt{2}-\sqrt{2}-1.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)-5\sqrt{2}+5\left(-\sqrt{2}\right)-5-3\left(-\sqrt{2}\right)\times 2+3\left(\sqrt{2}\right)^{2}-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
The square of \sqrt{2} is 2.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)-5\sqrt{2}+5\left(-\sqrt{2}\right)-5-6\left(-\sqrt{2}\right)+3\left(\sqrt{2}\right)^{2}-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
Multiply -3 and 2 to get -6.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)-5\sqrt{2}+5\left(-\sqrt{2}\right)-5+6\sqrt{2}+3\left(\sqrt{2}\right)^{2}-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
Multiply -6 and -1 to get 6.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+\sqrt{2}+5\left(-\sqrt{2}\right)-5+3\left(\sqrt{2}\right)^{2}-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
Combine -5\sqrt{2} and 6\sqrt{2} to get \sqrt{2}.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+\sqrt{2}+5\left(-\sqrt{2}\right)-5+3\times 2-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
The square of \sqrt{2} is 2.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+\sqrt{2}+5\left(-\sqrt{2}\right)-5+6-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
Multiply 3 and 2 to get 6.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+\sqrt{2}+5\left(-\sqrt{2}\right)+1-3\sqrt{2}\left(-\sqrt{2}\right)+3\sqrt{2}}{7}
Add -5 and 6 to get 1.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+\sqrt{2}+5\left(-\sqrt{2}\right)+1+3\sqrt{2}\sqrt{2}+3\sqrt{2}}{7}
Multiply -3 and -1 to get 3.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+\sqrt{2}+5\left(-\sqrt{2}\right)+1+3\times 2+3\sqrt{2}}{7}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+4\sqrt{2}+5\left(-\sqrt{2}\right)+1+3\times 2}{7}
Combine \sqrt{2} and 3\sqrt{2} to get 4\sqrt{2}.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+4\sqrt{2}+5\left(-\sqrt{2}\right)+1+6}{7}
Multiply 3 and 2 to get 6.
\frac{5\sqrt{2}\left(-\sqrt{2}\right)+4\sqrt{2}+5\left(-\sqrt{2}\right)+7}{7}
Add 1 and 6 to get 7.
\frac{-5\sqrt{2}\sqrt{2}+4\sqrt{2}+5\left(-1\right)\sqrt{2}+7}{7}
Multiply 5 and -1 to get -5.
\frac{-5\times 2+4\sqrt{2}+5\left(-1\right)\sqrt{2}+7}{7}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-10+4\sqrt{2}+5\left(-1\right)\sqrt{2}+7}{7}
Multiply -5 and 2 to get -10.
\frac{-10+4\sqrt{2}-5\sqrt{2}+7}{7}
Multiply 5 and -1 to get -5.
\frac{-10-\sqrt{2}+7}{7}
Combine 4\sqrt{2} and -5\sqrt{2} to get -\sqrt{2}.
\frac{-3-\sqrt{2}}{7}
Add -10 and 7 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}