Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}-1+\sqrt{6}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}-1+\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(\sqrt{2}-1+\sqrt{6}\right)\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{2}\sqrt{5}-\sqrt{5}+\sqrt{6}\sqrt{5}}{5}
Use the distributive property to multiply \sqrt{2}-1+\sqrt{6} by \sqrt{5}.
\frac{\sqrt{10}-\sqrt{5}+\sqrt{6}\sqrt{5}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}-\sqrt{5}+\sqrt{30}}{5}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.