Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}-\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{\left(\sqrt{2}-\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{\left(\sqrt{2}-\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
\frac{\left(\sqrt{2}-\sqrt{6}\right)^{2}}{-4}
Multiply \sqrt{2}-\sqrt{6} and \sqrt{2}-\sqrt{6} to get \left(\sqrt{2}-\sqrt{6}\right)^{2}.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}}{-4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-\sqrt{6}\right)^{2}.
\frac{2-2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}}{-4}
The square of \sqrt{2} is 2.
\frac{2-2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}}{-4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2-2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}}{-4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2-4\sqrt{3}+\left(\sqrt{6}\right)^{2}}{-4}
Multiply -2 and 2 to get -4.
\frac{2-4\sqrt{3}+6}{-4}
The square of \sqrt{6} is 6.
\frac{8-4\sqrt{3}}{-4}
Add 2 and 6 to get 8.
-2+\sqrt{3}
Divide each term of 8-4\sqrt{3} by -4 to get -2+\sqrt{3}.