Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{3}-i\sqrt{2}\right)}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Rationalize the denominator of \frac{\sqrt{2}-i\sqrt{3}}{\sqrt{3}+i\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-i\sqrt{2}.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(i\sqrt{2}\right)^{2}}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Consider \left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{3}-i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-\left(i\sqrt{2}\right)^{2}}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-i^{2}\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Expand \left(i\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-\left(-\left(\sqrt{2}\right)^{2}\right)}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Calculate i to the power of 2 and get -1.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-\left(-2\right)}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3+2}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Multiply -1 and -2 to get 2.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Add 3 and 2 to get 5.
\frac{\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{3}-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Use the distributive property to multiply \sqrt{2}-i\sqrt{3} by \sqrt{3}-i\sqrt{2}.
\frac{\sqrt{2}\sqrt{3}-i\left(\sqrt{3}\right)^{2}-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Use the distributive property to multiply \sqrt{2}-i\sqrt{3} by \sqrt{3}.
\frac{\sqrt{6}-i\left(\sqrt{3}\right)^{2}-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}-i\times 3-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}-3i-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Multiply -i and 3 to get -3i.
\frac{\sqrt{6}-3i+\left(-i\sqrt{2}-\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Use the distributive property to multiply -i by \sqrt{2}-i\sqrt{3}.
\frac{\sqrt{6}-3i-i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Use the distributive property to multiply -i\sqrt{2}-\sqrt{3} by \sqrt{2}.
\frac{\sqrt{6}-3i-i\times 2-\sqrt{3}\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}-3i-2i-\sqrt{3}\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Multiply -i and 2 to get -2i.
\frac{\sqrt{6}-3i-2i-\sqrt{6}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{6}-5i-\sqrt{6}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Subtract 2i from -3i to get -5i.
\frac{-5i}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Combine \sqrt{6} and -\sqrt{6} to get 0.
-i+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}}
Divide -5i by 5 to get -i.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{2}+i\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}+i\sqrt{3}.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(-i\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{2}+i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-i\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-i\sqrt{3}\right)^{2}.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate -i to the power of 2 and get -1.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-3\right)}
The square of \sqrt{3} is 3.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2+3}
Multiply -1 and -3 to get 3.
-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{5}
Add 2 and 3 to get 5.
-i+\frac{\sqrt{3}\sqrt{2}+i\left(\sqrt{3}\right)^{2}+i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5}
Apply the distributive property by multiplying each term of \sqrt{3}+i\sqrt{2} by each term of \sqrt{2}+i\sqrt{3}.
-i+\frac{\sqrt{6}+i\left(\sqrt{3}\right)^{2}+i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-i+\frac{\sqrt{6}+3i+i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5}
The square of \sqrt{3} is 3.
-i+\frac{\sqrt{6}+3i+2i-\sqrt{3}\sqrt{2}}{5}
The square of \sqrt{2} is 2.
-i+\frac{\sqrt{6}+5i-\sqrt{3}\sqrt{2}}{5}
Add 3i and 2i to get 5i.
-i+\frac{\sqrt{6}+5i-\sqrt{6}}{5}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-i+\frac{5i}{5}
Combine \sqrt{6} and -\sqrt{6} to get 0.
-i+i
Divide 5i by 5 to get i.
0
Add -i and i to get 0.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{3}-i\sqrt{2}\right)}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Rationalize the denominator of \frac{\sqrt{2}-i\sqrt{3}}{\sqrt{3}+i\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-i\sqrt{2}.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(i\sqrt{2}\right)^{2}}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Consider \left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{3}-i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-\left(i\sqrt{2}\right)^{2}}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
The square of \sqrt{3} is 3.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-i^{2}\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Expand \left(i\sqrt{2}\right)^{2}.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-\left(-\left(\sqrt{2}\right)^{2}\right)}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Calculate i to the power of 2 and get -1.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3-\left(-2\right)}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
The square of \sqrt{2} is 2.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{3+2}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Multiply -1 and -2 to get 2.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{3}-i\sqrt{2}\right)}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Add 3 and 2 to get 5.
Re(\frac{\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{3}-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Use the distributive property to multiply \sqrt{2}-i\sqrt{3} by \sqrt{3}-i\sqrt{2}.
Re(\frac{\sqrt{2}\sqrt{3}-i\left(\sqrt{3}\right)^{2}-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Use the distributive property to multiply \sqrt{2}-i\sqrt{3} by \sqrt{3}.
Re(\frac{\sqrt{6}-i\left(\sqrt{3}\right)^{2}-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Re(\frac{\sqrt{6}-i\times 3-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
The square of \sqrt{3} is 3.
Re(\frac{\sqrt{6}-3i-i\left(\sqrt{2}-i\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Multiply -i and 3 to get -3i.
Re(\frac{\sqrt{6}-3i+\left(-i\sqrt{2}-\sqrt{3}\right)\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Use the distributive property to multiply -i by \sqrt{2}-i\sqrt{3}.
Re(\frac{\sqrt{6}-3i-i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Use the distributive property to multiply -i\sqrt{2}-\sqrt{3} by \sqrt{2}.
Re(\frac{\sqrt{6}-3i-i\times 2-\sqrt{3}\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
The square of \sqrt{2} is 2.
Re(\frac{\sqrt{6}-3i-2i-\sqrt{3}\sqrt{2}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Multiply -i and 2 to get -2i.
Re(\frac{\sqrt{6}-3i-2i-\sqrt{6}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Re(\frac{\sqrt{6}-5i-\sqrt{6}}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Subtract 2i from -3i to get -5i.
Re(\frac{-5i}{5}+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Combine \sqrt{6} and -\sqrt{6} to get 0.
Re(-i+\frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}})
Divide -5i by 5 to get -i.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{\left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{2}+i\sqrt{3}\right)})
Rationalize the denominator of \frac{\sqrt{3}+i\sqrt{2}}{\sqrt{2}-i\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}+i\sqrt{3}.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(-i\sqrt{3}\right)^{2}})
Consider \left(\sqrt{2}-i\sqrt{3}\right)\left(\sqrt{2}+i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-i\sqrt{3}\right)^{2}})
The square of \sqrt{2} is 2.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-i\right)^{2}\left(\sqrt{3}\right)^{2}})
Expand \left(-i\sqrt{3}\right)^{2}.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-\left(\sqrt{3}\right)^{2}\right)})
Calculate -i to the power of 2 and get -1.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2-\left(-3\right)})
The square of \sqrt{3} is 3.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{2+3})
Multiply -1 and -3 to get 3.
Re(-i+\frac{\left(\sqrt{3}+i\sqrt{2}\right)\left(\sqrt{2}+i\sqrt{3}\right)}{5})
Add 2 and 3 to get 5.
Re(-i+\frac{\sqrt{3}\sqrt{2}+i\left(\sqrt{3}\right)^{2}+i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5})
Apply the distributive property by multiplying each term of \sqrt{3}+i\sqrt{2} by each term of \sqrt{2}+i\sqrt{3}.
Re(-i+\frac{\sqrt{6}+i\left(\sqrt{3}\right)^{2}+i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5})
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Re(-i+\frac{\sqrt{6}+3i+i\left(\sqrt{2}\right)^{2}-\sqrt{3}\sqrt{2}}{5})
The square of \sqrt{3} is 3.
Re(-i+\frac{\sqrt{6}+3i+2i-\sqrt{3}\sqrt{2}}{5})
The square of \sqrt{2} is 2.
Re(-i+\frac{\sqrt{6}+5i-\sqrt{3}\sqrt{2}}{5})
Add 3i and 2i to get 5i.
Re(-i+\frac{\sqrt{6}+5i-\sqrt{6}}{5})
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Re(-i+\frac{5i}{5})
Combine \sqrt{6} and -\sqrt{6} to get 0.
Re(-i+i)
Divide 5i by 5 to get i.
Re(0)
Add -i and i to get 0.
0
The real part of 0 is 0.