Evaluate
\frac{\sqrt{6}+6\sqrt{2}-4\sqrt{3}-2}{22}\approx 0.091207631
Quiz
Arithmetic
5 problems similar to:
\frac { \sqrt { 2 } - \sqrt { 3 } } { \sqrt { 2 } - 2 \sqrt { 6 } }
Share
Copied to clipboard
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{\left(\sqrt{2}-2\sqrt{6}\right)\left(\sqrt{2}+2\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-2\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}+2\sqrt{6}.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}-2\sqrt{6}\right)\left(\sqrt{2}+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{2-\left(-2\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{2-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-2\sqrt{6}\right)^{2}.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{2-4\left(\sqrt{6}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{2-4\times 6}
The square of \sqrt{6} is 6.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{2-24}
Multiply 4 and 6 to get 24.
\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{6}\right)}{-22}
Subtract 24 from 2 to get -22.
\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}-\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{6}}{-22}
Apply the distributive property by multiplying each term of \sqrt{2}-\sqrt{3} by each term of \sqrt{2}+2\sqrt{6}.
\frac{2+2\sqrt{2}\sqrt{6}-\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{6}}{-22}
The square of \sqrt{2} is 2.
\frac{2+2\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{6}}{-22}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2+2\times 2\sqrt{3}-\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{6}}{-22}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2+4\sqrt{3}-\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{6}}{-22}
Multiply 2 and 2 to get 4.
\frac{2+4\sqrt{3}-\sqrt{6}-2\sqrt{3}\sqrt{6}}{-22}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{2+4\sqrt{3}-\sqrt{6}-2\sqrt{3}\sqrt{3}\sqrt{2}}{-22}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2+4\sqrt{3}-\sqrt{6}-2\times 3\sqrt{2}}{-22}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{2+4\sqrt{3}-\sqrt{6}-6\sqrt{2}}{-22}
Multiply -2 and 3 to get -6.
\frac{-2-4\sqrt{3}+\sqrt{6}+6\sqrt{2}}{22}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}