Evaluate
\frac{x\left(4-x\right)}{2}
Differentiate w.r.t. x
2-x
Graph
Share
Copied to clipboard
\frac{4\sqrt{2}-\sqrt{2}x}{2}\times \frac{x}{\sqrt{2}}
Use the distributive property to multiply \sqrt{2} by 4-x.
\frac{4\sqrt{2}-\sqrt{2}x}{2}\times \frac{x\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{x}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{2}-\sqrt{2}x}{2}\times \frac{x\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\left(4\sqrt{2}-\sqrt{2}x\right)x\sqrt{2}}{2\times 2}
Multiply \frac{4\sqrt{2}-\sqrt{2}x}{2} times \frac{x\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4\sqrt{2}-\sqrt{2}x\right)x\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{\left(4\sqrt{2}x-\sqrt{2}x^{2}\right)\sqrt{2}}{4}
Use the distributive property to multiply 4\sqrt{2}-\sqrt{2}x by x.
\frac{4x\left(\sqrt{2}\right)^{2}-x^{2}\left(\sqrt{2}\right)^{2}}{4}
Use the distributive property to multiply 4\sqrt{2}x-\sqrt{2}x^{2} by \sqrt{2}.
\frac{4x\times 2-x^{2}\left(\sqrt{2}\right)^{2}}{4}
The square of \sqrt{2} is 2.
\frac{8x-x^{2}\left(\sqrt{2}\right)^{2}}{4}
Multiply 4 and 2 to get 8.
\frac{8x-x^{2}\times 2}{4}
The square of \sqrt{2} is 2.
\frac{8x-2x^{2}}{4}
Multiply -1 and 2 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}