Evaluate
\frac{\sqrt{2}}{7}+\frac{\sqrt{200629}}{23}\approx 19.676651675
Factor
\frac{7 \sqrt{200629} + 23 \sqrt{2}}{161} = 19.676651675064544
Share
Copied to clipboard
\frac{\sqrt{2}}{7}+\frac{\sqrt{8723}\sqrt{23}}{\left(\sqrt{23}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{8723}}{\sqrt{23}} by multiplying numerator and denominator by \sqrt{23}.
\frac{\sqrt{2}}{7}+\frac{\sqrt{8723}\sqrt{23}}{23}
The square of \sqrt{23} is 23.
\frac{\sqrt{2}}{7}+\frac{\sqrt{200629}}{23}
To multiply \sqrt{8723} and \sqrt{23}, multiply the numbers under the square root.
\frac{23\sqrt{2}}{161}+\frac{7\sqrt{200629}}{161}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 23 is 161. Multiply \frac{\sqrt{2}}{7} times \frac{23}{23}. Multiply \frac{\sqrt{200629}}{23} times \frac{7}{7}.
\frac{23\sqrt{2}+7\sqrt{200629}}{161}
Since \frac{23\sqrt{2}}{161} and \frac{7\sqrt{200629}}{161} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}