Skip to main content
Solve for V
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{2}V\times \frac{5\sqrt{2}V}{2}=19.6
Multiply both sides of the equation by 2.
\frac{\sqrt{2}\times 5\sqrt{2}V}{2}V=19.6
Express \sqrt{2}\times \frac{5\sqrt{2}V}{2} as a single fraction.
\frac{2\times 5V}{2}V=19.6
Multiply \sqrt{2} and \sqrt{2} to get 2.
5VV=19.6
Cancel out 2 and 2.
5V^{2}=19.6
Multiply V and V to get V^{2}.
V^{2}=\frac{19.6}{5}
Divide both sides by 5.
V^{2}=\frac{196}{50}
Expand \frac{19.6}{5} by multiplying both numerator and the denominator by 10.
V^{2}=\frac{98}{25}
Reduce the fraction \frac{196}{50} to lowest terms by extracting and canceling out 2.
V=\frac{7\sqrt{2}}{5} V=-\frac{7\sqrt{2}}{5}
Take the square root of both sides of the equation.
\sqrt{2}V\times \frac{5\sqrt{2}V}{2}=19.6
Multiply both sides of the equation by 2.
\frac{\sqrt{2}\times 5\sqrt{2}V}{2}V=19.6
Express \sqrt{2}\times \frac{5\sqrt{2}V}{2} as a single fraction.
\frac{2\times 5V}{2}V=19.6
Multiply \sqrt{2} and \sqrt{2} to get 2.
5VV=19.6
Cancel out 2 and 2.
5V^{2}=19.6
Multiply V and V to get V^{2}.
5V^{2}-19.6=0
Subtract 19.6 from both sides.
V=\frac{0±\sqrt{0^{2}-4\times 5\left(-19.6\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -19.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
V=\frac{0±\sqrt{-4\times 5\left(-19.6\right)}}{2\times 5}
Square 0.
V=\frac{0±\sqrt{-20\left(-19.6\right)}}{2\times 5}
Multiply -4 times 5.
V=\frac{0±\sqrt{392}}{2\times 5}
Multiply -20 times -19.6.
V=\frac{0±14\sqrt{2}}{2\times 5}
Take the square root of 392.
V=\frac{0±14\sqrt{2}}{10}
Multiply 2 times 5.
V=\frac{7\sqrt{2}}{5}
Now solve the equation V=\frac{0±14\sqrt{2}}{10} when ± is plus.
V=-\frac{7\sqrt{2}}{5}
Now solve the equation V=\frac{0±14\sqrt{2}}{10} when ± is minus.
V=\frac{7\sqrt{2}}{5} V=-\frac{7\sqrt{2}}{5}
The equation is now solved.