Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b\sqrt{2}=2\sqrt{b^{2}-9}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2b, the least common multiple of 2,b.
b\sqrt{2}-2\sqrt{b^{2}-9}=0
Subtract 2\sqrt{b^{2}-9} from both sides.
-2\sqrt{b^{2}-9}=-b\sqrt{2}
Subtract b\sqrt{2} from both sides of the equation.
-2\sqrt{b^{2}-9}=-\sqrt{2}b
Reorder the terms.
\left(-2\sqrt{b^{2}-9}\right)^{2}=\left(-\sqrt{2}b\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{b^{2}-9}\right)^{2}=\left(-\sqrt{2}b\right)^{2}
Expand \left(-2\sqrt{b^{2}-9}\right)^{2}.
4\left(\sqrt{b^{2}-9}\right)^{2}=\left(-\sqrt{2}b\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(b^{2}-9\right)=\left(-\sqrt{2}b\right)^{2}
Calculate \sqrt{b^{2}-9} to the power of 2 and get b^{2}-9.
4b^{2}-36=\left(-\sqrt{2}b\right)^{2}
Use the distributive property to multiply 4 by b^{2}-9.
4b^{2}-36=\left(-1\right)^{2}\left(\sqrt{2}\right)^{2}b^{2}
Expand \left(-\sqrt{2}b\right)^{2}.
4b^{2}-36=1\left(\sqrt{2}\right)^{2}b^{2}
Calculate -1 to the power of 2 and get 1.
4b^{2}-36=1\times 2b^{2}
The square of \sqrt{2} is 2.
4b^{2}-36=2b^{2}
Multiply 1 and 2 to get 2.
4b^{2}-36-2b^{2}=0
Subtract 2b^{2} from both sides.
2b^{2}-36=0
Combine 4b^{2} and -2b^{2} to get 2b^{2}.
2b^{2}=36
Add 36 to both sides. Anything plus zero gives itself.
b^{2}=\frac{36}{2}
Divide both sides by 2.
b^{2}=18
Divide 36 by 2 to get 18.
b=3\sqrt{2} b=-3\sqrt{2}
Take the square root of both sides of the equation.
\frac{\sqrt{2}}{2}=\frac{\sqrt{\left(3\sqrt{2}\right)^{2}-9}}{3\sqrt{2}}
Substitute 3\sqrt{2} for b in the equation \frac{\sqrt{2}}{2}=\frac{\sqrt{b^{2}-9}}{b}.
\frac{1}{2}\times 2^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}
Simplify. The value b=3\sqrt{2} satisfies the equation.
\frac{\sqrt{2}}{2}=\frac{\sqrt{\left(-3\sqrt{2}\right)^{2}-9}}{-3\sqrt{2}}
Substitute -3\sqrt{2} for b in the equation \frac{\sqrt{2}}{2}=\frac{\sqrt{b^{2}-9}}{b}.
\frac{1}{2}\times 2^{\frac{1}{2}}=-\frac{1}{2}\times 2^{\frac{1}{2}}
Simplify. The value b=-3\sqrt{2} does not satisfy the equation because the left and the right hand side have opposite signs.
b=3\sqrt{2}
Equation -2\sqrt{b^{2}-9}=-\sqrt{2}b has a unique solution.