Solve for b
b=3\sqrt{2}\approx 4.242640687
Quiz
Algebra
5 problems similar to:
\frac { \sqrt { 2 } } { 2 } = \frac { \sqrt { b ^ { 2 } - 9 } } { b }
Share
Copied to clipboard
b\sqrt{2}=2\sqrt{b^{2}-9}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2b, the least common multiple of 2,b.
b\sqrt{2}-2\sqrt{b^{2}-9}=0
Subtract 2\sqrt{b^{2}-9} from both sides.
-2\sqrt{b^{2}-9}=-b\sqrt{2}
Subtract b\sqrt{2} from both sides of the equation.
-2\sqrt{b^{2}-9}=-\sqrt{2}b
Reorder the terms.
\left(-2\sqrt{b^{2}-9}\right)^{2}=\left(-\sqrt{2}b\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{b^{2}-9}\right)^{2}=\left(-\sqrt{2}b\right)^{2}
Expand \left(-2\sqrt{b^{2}-9}\right)^{2}.
4\left(\sqrt{b^{2}-9}\right)^{2}=\left(-\sqrt{2}b\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(b^{2}-9\right)=\left(-\sqrt{2}b\right)^{2}
Calculate \sqrt{b^{2}-9} to the power of 2 and get b^{2}-9.
4b^{2}-36=\left(-\sqrt{2}b\right)^{2}
Use the distributive property to multiply 4 by b^{2}-9.
4b^{2}-36=\left(-1\right)^{2}\left(\sqrt{2}\right)^{2}b^{2}
Expand \left(-\sqrt{2}b\right)^{2}.
4b^{2}-36=1\left(\sqrt{2}\right)^{2}b^{2}
Calculate -1 to the power of 2 and get 1.
4b^{2}-36=1\times 2b^{2}
The square of \sqrt{2} is 2.
4b^{2}-36=2b^{2}
Multiply 1 and 2 to get 2.
4b^{2}-36-2b^{2}=0
Subtract 2b^{2} from both sides.
2b^{2}-36=0
Combine 4b^{2} and -2b^{2} to get 2b^{2}.
2b^{2}=36
Add 36 to both sides. Anything plus zero gives itself.
b^{2}=\frac{36}{2}
Divide both sides by 2.
b^{2}=18
Divide 36 by 2 to get 18.
b=3\sqrt{2} b=-3\sqrt{2}
Take the square root of both sides of the equation.
\frac{\sqrt{2}}{2}=\frac{\sqrt{\left(3\sqrt{2}\right)^{2}-9}}{3\sqrt{2}}
Substitute 3\sqrt{2} for b in the equation \frac{\sqrt{2}}{2}=\frac{\sqrt{b^{2}-9}}{b}.
\frac{1}{2}\times 2^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}
Simplify. The value b=3\sqrt{2} satisfies the equation.
\frac{\sqrt{2}}{2}=\frac{\sqrt{\left(-3\sqrt{2}\right)^{2}-9}}{-3\sqrt{2}}
Substitute -3\sqrt{2} for b in the equation \frac{\sqrt{2}}{2}=\frac{\sqrt{b^{2}-9}}{b}.
\frac{1}{2}\times 2^{\frac{1}{2}}=-\frac{1}{2}\times 2^{\frac{1}{2}}
Simplify. The value b=-3\sqrt{2} does not satisfy the equation because the left and the right hand side have opposite signs.
b=3\sqrt{2}
Equation -2\sqrt{b^{2}-9}=-\sqrt{2}b has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}