Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1+1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
\frac{\sqrt{2}}{2-2\sqrt{2}+1+1}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{3-2\sqrt{2}+1}
Add 2 and 1 to get 3.
\frac{\sqrt{2}}{4-2\sqrt{2}}
Add 3 and 1 to get 4.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{\left(4-2\sqrt{2}\right)\left(4+2\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{4-2\sqrt{2}} by multiplying numerator and denominator by 4+2\sqrt{2}.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{4^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(4-2\sqrt{2}\right)\left(4+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{16-\left(-2\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{16-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{16-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{16-4\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{16-8}
Multiply 4 and 2 to get 8.
\frac{\sqrt{2}\left(4+2\sqrt{2}\right)}{8}
Subtract 8 from 16 to get 8.
\frac{4\sqrt{2}+2\left(\sqrt{2}\right)^{2}}{8}
Use the distributive property to multiply \sqrt{2} by 4+2\sqrt{2}.
\frac{4\sqrt{2}+2\times 2}{8}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}+4}{8}
Multiply 2 and 2 to get 4.