Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{6}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Consider \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{6-2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Square \sqrt{6}. Square \sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Subtract 2 from 6 to get 4.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Square \sqrt{6}. Square \sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Subtract 2 from 6 to get 4.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)-\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Since \frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4} and \frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{3}+2-3\sqrt{2}+\sqrt{6}}{4}
Do the multiplications in \sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)-\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right).