Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{6}\right)}{\left(\sqrt{3}-\sqrt{6}\right)\left(\sqrt{3}+\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}-\sqrt{6}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{6}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{6}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{6}\right)\left(\sqrt{3}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{6}\right)}{3-6}
Square \sqrt{3}. Square \sqrt{6}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{6}\right)}{-3}
Subtract 6 from 3 to get -3.
\frac{\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{6}}{-3}
Use the distributive property to multiply \sqrt{2} by \sqrt{3}+\sqrt{6}.
\frac{\sqrt{6}+\sqrt{2}\sqrt{6}}{-3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}+\sqrt{2}\sqrt{2}\sqrt{3}}{-3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{\sqrt{6}+2\sqrt{3}}{-3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-\sqrt{6}-2\sqrt{3}}{3}
Multiply both numerator and denominator by -1.