Evaluate
1-2\sqrt{2}\approx -1.828427125
Share
Copied to clipboard
\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}-\frac{1}{\sqrt{2}-1}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{1}{\sqrt{2}-1}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{2-1}-\frac{1}{\sqrt{2}-1}
Square \sqrt{2}. Square 1.
\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-\frac{1}{\sqrt{2}-1}
Subtract 1 from 2 to get 1.
\sqrt{2}\left(\sqrt{2}-1\right)-\frac{1}{\sqrt{2}-1}
Anything divided by one gives itself.
\sqrt{2}\left(\sqrt{2}-1\right)-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\sqrt{2}\left(\sqrt{2}-1\right)-\frac{\sqrt{2}+1}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{2}\left(\sqrt{2}-1\right)-\frac{\sqrt{2}+1}{2-1}
Square \sqrt{2}. Square 1.
\sqrt{2}\left(\sqrt{2}-1\right)-\frac{\sqrt{2}+1}{1}
Subtract 1 from 2 to get 1.
\sqrt{2}\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)
Anything divided by one gives itself.
\sqrt{2}\left(\sqrt{2}-1\right)-\sqrt{2}-1
To find the opposite of \sqrt{2}+1, find the opposite of each term.
\left(\sqrt{2}\right)^{2}-\sqrt{2}-\sqrt{2}-1
Use the distributive property to multiply \sqrt{2} by \sqrt{2}-1.
2-\sqrt{2}-\sqrt{2}-1
The square of \sqrt{2} is 2.
2-2\sqrt{2}-1
Combine -\sqrt{2} and -\sqrt{2} to get -2\sqrt{2}.
1-2\sqrt{2}
Subtract 1 from 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}