Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}\times 4}{\sqrt{6}+\sqrt{2}}=\frac{b}{\frac{1}{2}}
Divide \sqrt{2} by \frac{\sqrt{6}+\sqrt{2}}{4} by multiplying \sqrt{2} by the reciprocal of \frac{\sqrt{6}+\sqrt{2}}{4}.
\frac{\sqrt{2}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}=\frac{b}{\frac{1}{2}}
Rationalize the denominator of \frac{\sqrt{2}\times 4}{\sqrt{6}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{2}.
\frac{\sqrt{2}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{1}{2}}
Consider \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}=\frac{b}{\frac{1}{2}}
Square \sqrt{6}. Square \sqrt{2}.
\frac{\sqrt{2}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{4}=\frac{b}{\frac{1}{2}}
Subtract 2 from 6 to get 4.
\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)=\frac{b}{\frac{1}{2}}
Cancel out 4 and 4.
\sqrt{2}\sqrt{6}-\left(\sqrt{2}\right)^{2}=\frac{b}{\frac{1}{2}}
Use the distributive property to multiply \sqrt{2} by \sqrt{6}-\sqrt{2}.
\sqrt{2}\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}=\frac{b}{\frac{1}{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}-\left(\sqrt{2}\right)^{2}=\frac{b}{\frac{1}{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{3}-2=\frac{b}{\frac{1}{2}}
The square of \sqrt{2} is 2.
\frac{b}{\frac{1}{2}}=2\sqrt{3}-2
Swap sides so that all variable terms are on the left hand side.
2b=2\sqrt{3}-2
The equation is in standard form.
\frac{2b}{2}=\frac{2\sqrt{3}-2}{2}
Divide both sides by 2.
b=\frac{2\sqrt{3}-2}{2}
Dividing by 2 undoes the multiplication by 2.
b=\sqrt{3}-1
Divide 2\sqrt{3}-2 by 2.