Evaluate
5-2\sqrt{3}\approx 1.535898385
Share
Copied to clipboard
\frac{\sqrt{2}\sqrt{2}\sqrt{3}}{\sqrt{3}}+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\sqrt{3}}{\sqrt{3}}+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\sqrt{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}\sqrt{3}}{3}+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
The square of \sqrt{3} is 3.
\frac{2\times 3}{3}+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6}{3}+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Multiply 2 and 3 to get 6.
2+\left(\sqrt{3}-1\right)^{2}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Divide 6 by 3 to get 2.
2+\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
2+3-2\sqrt{3}+1-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
The square of \sqrt{3} is 3.
2+4-2\sqrt{3}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Add 3 and 1 to get 4.
6-2\sqrt{3}-\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)
Add 2 and 4 to get 6.
6-2\sqrt{3}-\left(\left(\sqrt{2}\right)^{2}-1\right)
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
6-2\sqrt{3}-\left(2-1\right)
The square of \sqrt{2} is 2.
6-2\sqrt{3}-1
Subtract 1 from 2 to get 1.
5-2\sqrt{3}
Subtract 1 from 6 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}