Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{\left(-6\sqrt{2}+2\right)\left(-6\sqrt{2}-2\right)}
Rationalize the denominator of \frac{\sqrt{2}+32}{-6\sqrt{2}+2} by multiplying numerator and denominator by -6\sqrt{2}-2.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{\left(-6\sqrt{2}\right)^{2}-2^{2}}
Consider \left(-6\sqrt{2}+2\right)\left(-6\sqrt{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{\left(-6\right)^{2}\left(\sqrt{2}\right)^{2}-2^{2}}
Expand \left(-6\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{36\left(\sqrt{2}\right)^{2}-2^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{36\times 2-2^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{72-2^{2}}
Multiply 36 and 2 to get 72.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{72-4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{2}+32\right)\left(-6\sqrt{2}-2\right)}{68}
Subtract 4 from 72 to get 68.
\frac{-6\left(\sqrt{2}\right)^{2}-2\sqrt{2}-192\sqrt{2}-64}{68}
Apply the distributive property by multiplying each term of \sqrt{2}+32 by each term of -6\sqrt{2}-2.
\frac{-6\times 2-2\sqrt{2}-192\sqrt{2}-64}{68}
The square of \sqrt{2} is 2.
\frac{-12-2\sqrt{2}-192\sqrt{2}-64}{68}
Multiply -6 and 2 to get -12.
\frac{-12-194\sqrt{2}-64}{68}
Combine -2\sqrt{2} and -192\sqrt{2} to get -194\sqrt{2}.
\frac{-76-194\sqrt{2}}{68}
Subtract 64 from -12 to get -76.