Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{2}-1}{\sqrt{2}+1}
Rationalize the denominator of \frac{\sqrt{2}+1}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{2}-1}{\sqrt{2}+1}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{2}-1}{\sqrt{2}+1}
Square \sqrt{2}. Square 1.
\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{2}-1}{\sqrt{2}+1}
Subtract 1 from 2 to get 1.
\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)-\frac{\sqrt{2}-1}{\sqrt{2}+1}
Anything divided by one gives itself.
\left(\sqrt{2}+1\right)^{2}-\frac{\sqrt{2}-1}{\sqrt{2}+1}
Multiply \sqrt{2}+1 and \sqrt{2}+1 to get \left(\sqrt{2}+1\right)^{2}.
\left(\sqrt{2}+1\right)^{2}-\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
Rationalize the denominator of \frac{\sqrt{2}-1}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
\left(\sqrt{2}+1\right)^{2}-\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{2}+1\right)^{2}-\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{2-1}
Square \sqrt{2}. Square 1.
\left(\sqrt{2}+1\right)^{2}-\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{1}
Subtract 1 from 2 to get 1.
\left(\sqrt{2}+1\right)^{2}-\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)
Anything divided by one gives itself.
\left(\sqrt{2}+1\right)^{2}-\left(\sqrt{2}-1\right)^{2}
Multiply \sqrt{2}-1 and \sqrt{2}-1 to get \left(\sqrt{2}-1\right)^{2}.
\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-\left(\sqrt{2}-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+1\right)^{2}.
2+2\sqrt{2}+1-\left(\sqrt{2}-1\right)^{2}
The square of \sqrt{2} is 2.
3+2\sqrt{2}-\left(\sqrt{2}-1\right)^{2}
Add 2 and 1 to get 3.
3+2\sqrt{2}-\left(\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
3+2\sqrt{2}-\left(2-2\sqrt{2}+1\right)
The square of \sqrt{2} is 2.
3+2\sqrt{2}-\left(3-2\sqrt{2}\right)
Add 2 and 1 to get 3.
3+2\sqrt{2}-3-\left(-2\sqrt{2}\right)
To find the opposite of 3-2\sqrt{2}, find the opposite of each term.
3+2\sqrt{2}-3+2\sqrt{2}
The opposite of -2\sqrt{2} is 2\sqrt{2}.
2\sqrt{2}+2\sqrt{2}
Subtract 3 from 3 to get 0.
4\sqrt{2}
Combine 2\sqrt{2} and 2\sqrt{2} to get 4\sqrt{2}.