Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}+\sqrt{5}\right)\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{5}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\left(\sqrt{2}+\sqrt{5}\right)\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{\sqrt{2}\sqrt{10}+\sqrt{5}\sqrt{10}}{10}
Use the distributive property to multiply \sqrt{2}+\sqrt{5} by \sqrt{10}.
\frac{\sqrt{2}\sqrt{2}\sqrt{5}+\sqrt{5}\sqrt{10}}{10}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{2\sqrt{5}+\sqrt{5}\sqrt{10}}{10}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\sqrt{5}+\sqrt{5}\sqrt{5}\sqrt{2}}{10}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{2\sqrt{5}+5\sqrt{2}}{10}
Multiply \sqrt{5} and \sqrt{5} to get 5.