Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}-\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}
Square 2. Square \sqrt{3}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}-\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}
Subtract 3 from 4 to get 1.
\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}
Anything divided by one gives itself.
\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\left(\sqrt{2}+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)
Anything divided by one gives itself.
2\sqrt{2}+\sqrt{2}\sqrt{3}+2\sqrt{3}+\left(\sqrt{3}\right)^{2}-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)
Apply the distributive property by multiplying each term of \sqrt{2}+\sqrt{3} by each term of 2+\sqrt{3}.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}+\left(\sqrt{3}\right)^{2}-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}+3-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)
The square of \sqrt{3} is 3.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}+3-\left(\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}\right)
Use the distributive property to multiply \sqrt{3} by \sqrt{3}+\sqrt{2}.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}+3-\left(3+\sqrt{3}\sqrt{2}\right)
The square of \sqrt{3} is 3.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}+3-\left(3+\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}+3-3-\sqrt{6}
To find the opposite of 3+\sqrt{6}, find the opposite of each term.
2\sqrt{2}+\sqrt{6}+2\sqrt{3}-\sqrt{6}
Subtract 3 from 3 to get 0.
2\sqrt{2}+2\sqrt{3}
Combine \sqrt{6} and -\sqrt{6} to get 0.