Solve for a (complex solution)
a=-\frac{\left(\sqrt{3}+\sqrt[3]{2}\right)\left(\sqrt[6]{864}b-3\sqrt{2}b+\sqrt{2}+\sqrt{3}\right)}{3-2^{\frac{2}{3}}}
Solve for b (complex solution)
b=\frac{\sqrt{6}\left(2\sqrt[3]{2}+3\sqrt[3]{4}+9\right)\left(-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3\right)}{138}
Solve for a
a=-\frac{\left(\sqrt{3}+\sqrt[3]{2}\right)\left(2\sqrt[3]{2}+3\times 2^{\frac{2}{3}}+9\right)\left(\sqrt[6]{864}b-3\sqrt{2}b+\sqrt{2}+\sqrt{3}\right)}{23}
Solve for b
b=\frac{\sqrt{6}\left(\sqrt{3}+\sqrt[3]{2}\right)\left(2\sqrt[3]{2}+3\times 2^{\frac{2}{3}}+9\right)\left(\sqrt{3}a-\sqrt[3]{2}a+\sqrt{2}+\sqrt{3}\right)}{138}
Share
Copied to clipboard
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}=a-b\sqrt{6}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{3}}{\sqrt[3]{2}-\sqrt{3}} by multiplying numerator and denominator by \sqrt[3]{2}+\sqrt{3}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}=a-b\sqrt{6}
Consider \left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{2}\sqrt{3}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
Use the distributive property to multiply \sqrt{2}+\sqrt{3} by \sqrt[3]{2}+\sqrt{3}.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
a-b\sqrt{6}=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}
Swap sides so that all variable terms are on the left hand side.
a=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}+b\sqrt{6}
Add b\sqrt{6} to both sides.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}=a-b\sqrt{6}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{3}}{\sqrt[3]{2}-\sqrt{3}} by multiplying numerator and denominator by \sqrt[3]{2}+\sqrt{3}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}=a-b\sqrt{6}
Consider \left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{2}\sqrt{3}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
Use the distributive property to multiply \sqrt{2}+\sqrt{3} by \sqrt[3]{2}+\sqrt{3}.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
a-b\sqrt{6}=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}
Swap sides so that all variable terms are on the left hand side.
-b\sqrt{6}=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}-a
Subtract a from both sides.
\left(-\sqrt{6}\right)b=-a+\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+3}{\left(\sqrt[3]{2}\right)^{2}-3}
The equation is in standard form.
\frac{\left(-\sqrt{6}\right)b}{-\sqrt{6}}=\frac{-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3}{\left(2^{\frac{2}{3}}-3\right)\left(-\sqrt{6}\right)}
Divide both sides by -\sqrt{6}.
b=\frac{-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3}{\left(2^{\frac{2}{3}}-3\right)\left(-\sqrt{6}\right)}
Dividing by -\sqrt{6} undoes the multiplication by -\sqrt{6}.
b=-\frac{\sqrt{6}\left(-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3\right)}{6\left(2^{\frac{2}{3}}-3\right)}
Divide \frac{2^{\frac{5}{6}}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3-a\times 2^{\frac{2}{3}}+3a}{2^{\frac{2}{3}}-3} by -\sqrt{6}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}=a-b\sqrt{6}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{3}}{\sqrt[3]{2}-\sqrt{3}} by multiplying numerator and denominator by \sqrt[3]{2}+\sqrt{3}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}=a-b\sqrt{6}
Consider \left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{2}\sqrt{3}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
Use the distributive property to multiply \sqrt{2}+\sqrt{3} by \sqrt[3]{2}+\sqrt{3}.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
a-b\sqrt{6}=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}
Swap sides so that all variable terms are on the left hand side.
a=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}+b\sqrt{6}
Add b\sqrt{6} to both sides.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}=a-b\sqrt{6}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{3}}{\sqrt[3]{2}-\sqrt{3}} by multiplying numerator and denominator by \sqrt[3]{2}+\sqrt{3}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}=a-b\sqrt{6}
Consider \left(\sqrt[3]{2}-\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt[3]{2}+\sqrt{3}\right)}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{2}\sqrt{3}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
Use the distributive property to multiply \sqrt{2}+\sqrt{3} by \sqrt[3]{2}+\sqrt{3}.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+\left(\sqrt{3}\right)^{2}}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}=a-b\sqrt{6}
The square of \sqrt{3} is 3.
a-b\sqrt{6}=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}
Swap sides so that all variable terms are on the left hand side.
-b\sqrt{6}=\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3}{\left(\sqrt[3]{2}\right)^{2}-3}-a
Subtract a from both sides.
\left(-\sqrt{6}\right)b=-a+\frac{\sqrt{2}\sqrt[3]{2}+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+3}{\left(\sqrt[3]{2}\right)^{2}-3}
The equation is in standard form.
\frac{\left(-\sqrt{6}\right)b}{-\sqrt{6}}=\frac{-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3}{\left(2^{\frac{2}{3}}-3\right)\left(-\sqrt{6}\right)}
Divide both sides by -\sqrt{6}.
b=\frac{-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3}{\left(2^{\frac{2}{3}}-3\right)\left(-\sqrt{6}\right)}
Dividing by -\sqrt{6} undoes the multiplication by -\sqrt{6}.
b=-\frac{\sqrt{6}\left(-2^{\frac{2}{3}}a+3a+\sqrt{3}\sqrt[3]{2}+\sqrt{6}+2^{\frac{5}{6}}+3\right)}{6\left(2^{\frac{2}{3}}-3\right)}
Divide \frac{2^{\frac{5}{6}}+\sqrt{6}+\sqrt{3}\sqrt[3]{2}+3-a\times 2^{\frac{2}{3}}+3a}{2^{\frac{2}{3}}-3} by -\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}