Evaluate
\frac{\sqrt{6}+2\sqrt{2}}{4}\approx 1.319479217
Share
Copied to clipboard
\frac{\sqrt{2}+\frac{\sqrt{3}}{\sqrt{2}}}{2}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\sqrt{2}+\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{2}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}+\frac{\sqrt{3}\sqrt{2}}{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}+\frac{\sqrt{6}}{2}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{2\sqrt{2}}{2}+\frac{\sqrt{6}}{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{2}{2}.
\frac{\frac{2\sqrt{2}+\sqrt{6}}{2}}{2}
Since \frac{2\sqrt{2}}{2} and \frac{\sqrt{6}}{2} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{2}+\sqrt{6}}{2\times 2}
Express \frac{\frac{2\sqrt{2}+\sqrt{6}}{2}}{2} as a single fraction.
\frac{2\sqrt{2}+\sqrt{6}}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}