Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
Rationalize the denominator of \frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} by multiplying numerator and denominator by 5\sqrt{2}+4\sqrt{3}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Consider \left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
Multiply 25 and 2 to get 50.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-4\sqrt{3}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
Multiply 16 and 3 to get 48.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
Subtract 48 from 50 to get 2.
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Apply the distributive property by multiplying each term of 3\sqrt{2}-2\sqrt{3} by each term of 5\sqrt{2}+4\sqrt{3}.
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
The square of \sqrt{2} is 2.
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Multiply 15 and 2 to get 30.
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
Combine 12\sqrt{6} and -10\sqrt{6} to get 2\sqrt{6}.
\frac{30+2\sqrt{6}-8\times 3}{2}
The square of \sqrt{3} is 3.
\frac{30+2\sqrt{6}-24}{2}
Multiply -8 and 3 to get -24.
\frac{6+2\sqrt{6}}{2}
Subtract 24 from 30 to get 6.
3+\sqrt{6}
Divide each term of 6+2\sqrt{6} by 2 to get 3+\sqrt{6}.