Evaluate
2-\sqrt{3}\approx 0.267949192
Quiz
Arithmetic
5 problems similar to:
\frac { \sqrt { 15 } - \sqrt { 5 } } { \sqrt { 15 } + \sqrt { 5 } }
Share
Copied to clipboard
\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{15}-\sqrt{5}\right)}{\left(\sqrt{15}+\sqrt{5}\right)\left(\sqrt{15}-\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{15}-\sqrt{5}}{\sqrt{15}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{15}-\sqrt{5}.
\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{15}-\sqrt{5}\right)}{\left(\sqrt{15}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{15}+\sqrt{5}\right)\left(\sqrt{15}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{15}-\sqrt{5}\right)}{15-5}
Square \sqrt{15}. Square \sqrt{5}.
\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{15}-\sqrt{5}\right)}{10}
Subtract 5 from 15 to get 10.
\frac{\left(\sqrt{15}-\sqrt{5}\right)^{2}}{10}
Multiply \sqrt{15}-\sqrt{5} and \sqrt{15}-\sqrt{5} to get \left(\sqrt{15}-\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{15}\right)^{2}-2\sqrt{15}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{10}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{15}-\sqrt{5}\right)^{2}.
\frac{15-2\sqrt{15}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{10}
The square of \sqrt{15} is 15.
\frac{15-2\sqrt{5}\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{10}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{15-2\times 5\sqrt{3}+\left(\sqrt{5}\right)^{2}}{10}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15-10\sqrt{3}+\left(\sqrt{5}\right)^{2}}{10}
Multiply -2 and 5 to get -10.
\frac{15-10\sqrt{3}+5}{10}
The square of \sqrt{5} is 5.
\frac{20-10\sqrt{3}}{10}
Add 15 and 5 to get 20.
2-\sqrt{3}
Divide each term of 20-10\sqrt{3} by 10 to get 2-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}